In mathematics, the

**associative property** is a property of some binary operations. In propositional logic,

**associativity** is a valid rule of replacement for expressions in logical proofs.

MORE
In mathematics, the **associative property** is a property of some binary operations. In propositional logic, **associativity** is a valid rule of replacement for expressions in logical proofs.

Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is, rearranging the parentheses in such an expression will not change its value. Consider the following equations:

Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real numbers, it can be said that "addition and multiplication of real numbers are associative operations".

Associativity is not to be confused with commutativity, which addresses whether or not the order of two operands changes the result. For example, the order doesn't matter in the multiplication of real numbers, that is, *a* × *b* = *b* × *a*, so we say that the multiplication of real numbers is a commutative operation.

Associative operations are abundant in mathematics; in fact, many algebraic structures (such as semigroups and categories) explicitly require their binary operations to be associative.

However, many important and interesting operations are non-associative; some examples include subtraction, exponentiation and the vector cross product. In contrast to the theoretical counterpart, the addition of floating point numbers in computer science is not associative, and is an important source of rounding error.

...LESS