image credit
L'Hôpital's rule
In mathematics, and more specifically in calculus, L'Hôpital's rule or L'Hospital's rule (French: [lopital]) uses derivatives to help evaluate limits involving indeterminate forms. Application (or repeated application) of the rule often converts an indeterminate form to an expression that can be evaluated by substitution, allowing easier evaluation of the limit. The rule is named after the 17th-century French mathematician Guillaume de l'Hôpital. Although the contribution of the rule is often attributed to L'Hôpital, the theorem was first introduced to L'Hôpital in 1694 by the Swiss mathematician Johann Bernoulli. MORE
Mediander uses proprietary software that curates millions of interconnected topics to produce the Mediander Topics search results. As with any algorithmic search, anomalous results may occur. If you notice such an anomaly, or have any comments or suggestions, please contact us.