In mathematics, the **limit inferior** and **limit superior** of a sequence can be thought of as limiting (i.e., eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant. Limit inferior is also called **infimum limit**, **liminf**, **inferior limit**, **lower limit**, or **inner limit**; limit superior is also known as **supremum limit**, **limit supremum**, **limsup**, **superior limit**, **upper limit**, or **outer limit**.